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ABSTRACT

Distributed Machine Learning (ML) methods such as the well-
known Parameter Server (PS) are often used in heterogeneous
environments, e.g., when performing edge computing. In heteroge-
neous environments, model training is affected by differences in
link latency, computing resources, and data distribution. We com-
pare synchronous and asynchronous PS training and show that low
latency is tolerable for asynchronous PS.
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1 INTRODUCTION

Machine Learning (ML) handles increasing model size and training
requirements by distributed ML [1], e.g., using a Parameter Server
(PS) [2, 3] to distribute computation across multiple decentralized
machines (workers) that exchange update gradients with a cen-
tralized machine (parameter server). The parameter server stores
the model parameters, manages the data distribution, and aggre-
gates and applies the update gradients received from workers. Each
worker maintains an instance of the model and usually accesses
only non-overlapping portions of the data. The complete data set
thus distributes among all workers and can either be transferred
from central storage, e.g., the parameter server, or collected and
stored directly by the workers. Each worker processes its data to
determine update gradients that describe the necessary changes to
the model parameters (weights, biases) for a better prediction of its
data. For computing the updates, workers typically apply stochas-
tic gradient descent (SGD). After processing a predefined number
of data samples, the workers share their update gradients with
the parameter server and then receive the updated mutual model.
How many other workers have contributed to the mutual model
instance depends on the PS implementation. In synchronous PS
implementations, for a mutual model update, the parameter server
aggregates the update gradients from all workers simultaneously
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before broadcasting it. Usually, the workers interrupt their process-
ing until receiving the updated model. In contrast, in asynchronous
PS implementations, the parameter server updates and returns the
updated model immediately after receiving an update gradient [4].

PS is exposed to varying link latency or computing capacities.
Both affect the order of model updates, impacting model devel-
opment. For example, edge computing often takes place in such
heterogeneous environments, leading to long training times for
synchronous PS, which motivated asynchronous PS [4]. However,
asynchronous PS can hamper model convergence as workers pro-
cess different model instances [5].

To attenuate these effects, various methods have been described,
e.g., back-up workers [5], limiting worker staleness [6], or changes
to SGD [7, 8]. However, no nostrum exists for handling staleness
effects in training. With our study, we aim to help understand how
update delays, e.g., due to heterogeneous link latency or computing
capacity, affect model development and determine what delays can
be tolerated. Our key finding is that these effects are very different
for independent and identical distributed (IID) and non-IID dis-
tributed training data: if workers set statistically different parts of
the training set, asynchronous training becomes much more suscep-
tible to such infrastructure heterogeneity; synchronous training, on
the other hand, stays robust but slow. In the following, we show our
ongoing work to evaluate the impact of link delays on the evolution
of ML models trained with PS. We take an experimental approach to
provide meaningful results, reflecting the full complexity of actual
system setups.

2 EXPERIMENT DESIGN

In our experiment, we train an artificial neural network on the
NSL-KDD data set [9] using either synchronous or asynchronous
PSs. The training infrastructure comprises two workers connected
to a parameter server. We implemented the two PS methods with
Ray [10], connecting three virtual machines (Ubuntu 22.04) on the
same physical server with equal computing resources. To model
update delays due to varying link latency or computation capacity,
we impose additional link delays from worker to parameter server
using the tc package. This allows us fine-grained control over
the time from an updater request from the parameter server to a
worker to the time the update does arrive at the parameter server.
We call a setting homogeneous if all virtual machines have the same
computing resources and link delays; it is heterogeneous if tc adds
varying delays to the links between PS-Worker 1 and PS-Worker 2.

The NSL-KDD is a network traffic dataset typically used for train-
ing intrusion detection systems. This is expected to be a distributed
ML application in future mobile networks [11]. Under supervised
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Figure 1: Comparison of synchronous and asynchronous Parameter Server with IID and non-IID data. Training for 100 epochs.

100ms delay difference between workers.

learning, models learn to classify traffic into five classes: Denial of
Service (DoS), User to Root (U2R), Remote to Local (R2L), Probing,
and Normal. Here, the model is trained with three-quarters of the
data set, while the remainder is used to evaluate the model’s accu-
racy. As the disproportionate impact of data distribution on model
development in heterogeneous settings is our key hypothesis, we
split the data differently for IID and non-IID experiments. In IID
experiments, each worker accesses one-half of the training set con-
taining all classes. In the non-IID experiments, Worker 1 accesses
the DoS, R2L, and one-half of the Normal traffic data, and Worker 2
accesses U2R, Probe, and the other half of the Normal traffic data.

The model is a fully-connected artificial neural network with
one hidden layer. The input layer has 93 neurons, the hidden layer
21 neurons, and the output layer five neurons, one for every class
as a one-hot-encoding. The hidden-layer output is ReLu activated,;
the output layer uses a logarithmic softmax activation.

3 HOW LATENCIES IMPACT MODEL
DEVELOPMENT IN PARAMETER SERVER

In this section, we analyze the effects of varying latency between
PS and workers on model development. We consider all four com-
binations: model training with synchronous and asynchronous PS
and IID and non-IID data. Initially, the link delays are 1 ms for PS—
Worker 1 and 100 ms for PS-Worker 2. The additional delays are
applied uniformly. We repeated each training twenty times with
reshuffled training set and different parameter initializations of the
model. Model accuracy is the key metric, and we show it over both
number of training epochs as well as over wall-clock time.

Figure 1 shows that the accuracy is comparable between syn-
chronous PS with both data distributions and asynchronous PS with
IID data distribution. The advantage of asynchronous PS is evident
when comparing the wall-clock time: although all three setups iter-
ate over the data set just as often and compute the same amount, the
asynchronous PS is about 10x faster than the synchronous PS. This
is to be expected in such a vastly heterogeneous setup. However,
for non-IID data, models trained by asynchronous PS require more
iterations over the data set to achieve similar results.
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Figure 2: Accuracy and training time after 10 epochs for asyn-
chronous Parameter Server over worker delay differences.

These results elucidate the big impact of the combination of
non-IID data with asynchronous training and question the viability
of this approach. To deepen the understanding, we repeated the
asynchronous PS training with non-IID data for different delay
differences. We keep the link delay between PS and Worker 1 fix
at 1 ms, and solely vary the uniform link delay between PS and
Worker 2. Figure 2 shows that lower delay differences increase
model accuracy while reducing training time. For delays greater
60 ms, the effect appears to attenuate and become asymptotic.

4 SUMMARY AND OUTLOOK

We have shown that for the well-known PS method, latency affects
model development in terms of both training time and accuracy.
In addition, we found for asynchronous PS when data are non-IID,
the accuracy decreases at high latency differences. On the other
hand, for low latency, asynchronous PS is clearly superior.

We plan to extend this work in progress, short-term, to a quanti-
tative characterization of the interaction between degrees of “non-
IID-ness” (e.g., correlation between batches) arising from different
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data sets and variety of latency/CPU resources among works re-
garding metrics like wall-clock-time or total effort. We also want to
look at how susceptible different distributed ML architectures (e.g.,
All-Reduce or Federated Learning) are to these effects. Mid-term,
we see a need to come up with a scheme to dynamically select
the best training approach, e.g., switching between synchronous
and asynchronous methods when system parameters like latency
change.
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